Review: Tangent Line - 10/17/16

1 Tangent Line

Definition 1.0.1 The tangent line of f through the point $P=(a, f(a))$ is a line through P with slope

$$
m=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} .
$$

The slope of the tangent line is also called the instantaneous rate of change.
Example 1.0.2 Find the equation for the tangent line of $g(x)=x^{2}-2$ through the point $(1,-1)$. First we find the slope, which is $m=\lim _{x \rightarrow 1} \frac{g(x)-g(1)}{x-1}=\lim _{x \rightarrow 1} \frac{x^{2}-2+1}{x-1}=\lim _{x \rightarrow 1} \frac{(x+1)(x-1)}{x-1}=$ $\lim _{x \rightarrow 1} x+1=2$. Now we can use the slope and our given point to find the equation of the line using point-slope form: $y-(-1)=2(x-1)=2 x-2$, so $y=2 x-3$.

If we replace x with $a=h$, we can rewrite our definition of the slope of the tangent line as

$$
m=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

Example 1.0.3 Use the other definition to find the tangent line of $g(x)=x^{2}-2$ through the point $(1,-1)$. We have $m=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=\lim _{x \rightarrow 0} \frac{1+2 h+h^{2}-2+1}{h}=\lim _{h \rightarrow 0} \frac{h(2+h)}{h}=\lim _{h \rightarrow 0} 2+h=2$. Then we use the point slope form to again get $y=2 x-3$.

2 Derivative at a Point

Definition 2.0.4 The derivative of a function f at a point a (denoted $f^{\prime}(a)$) is the slope of the tangent line to f at the point $(a, f(a))$. That is

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$

Note that we can also use our other definition of slope of tangent line, so we can also have

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} .
$$

Example 2.0.5 Let $f(x)=x^{2}$. What is $f^{\prime}(3)$? We have $f^{\prime}(3)=\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}=\lim _{h \rightarrow 0} \frac{9+6 h+h^{2}-9}{h}=$ $\lim _{h \rightarrow 0} \frac{h(6+h)}{h}=\lim _{h \rightarrow 0} 6+h=6$.

Example 2.0.6 Let $f(x)=x^{2}-2 x$. What is $f^{\prime}(3)$? Let's try using the other definition. We have $f^{\prime}(2)=\lim _{x \rightarrow 3} \frac{x^{2}-2 x-(9-6)}{x-3}=\lim _{x \rightarrow 3} \frac{x^{2}-2 x-3}{x-3}=\lim _{x \rightarrow 3} \frac{(x-3)(x+1)}{x-3}=\lim _{x \rightarrow 3} x+1=4$.

Practice Problems

1. Let $f(x)=\frac{7}{x}$. What is $f^{\prime}(2)$?
2. Let $g(x)=x^{2}-3 x$. What is $g^{\prime}(3)$?
3. Let $k(x)=\frac{3}{x^{2}}$. What is $k^{\prime}(1)$?

Solutions

1. We have that $f^{\prime}(2)=\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=\lim _{h \rightarrow 0} \frac{\frac{7}{2+h}-\frac{7}{2}}{h}=\lim _{h \rightarrow 0} \frac{\frac{14}{4+2 h}-\frac{14+7 h}{4+2 h}}{h}=\lim _{h \rightarrow 0} \frac{-7 h}{h(4+2 h)}=$ $\lim _{h \rightarrow 0} \frac{-7}{4+2 h}=\frac{-7}{4}$.
2. We have that $g^{\prime}(3)=\lim _{x \rightarrow 3} \frac{x^{2}-3 x-(9-9)}{x-3}=\lim _{x \rightarrow 3} \frac{x(x-3)}{x-3}=\lim _{x \rightarrow 3} x=3$.
3. We have that $k^{\prime}(1)=\lim _{x \rightarrow 1} \frac{\frac{3}{x^{2}}-\frac{3}{1}}{x-1}=\lim _{x \rightarrow 1} \frac{\frac{3}{x^{2}} \frac{3 x^{2}}{x^{2}}}{x-1}=\lim _{x \rightarrow 1} \frac{3-3 x^{2}}{(x-1)\left(x^{2}\right)}=\lim _{x \rightarrow 1} \frac{-3(x+1)(x-1)}{(x-1) x^{2}}=$ $\lim _{x \rightarrow 1} \frac{-3(x+1)}{x^{2}}=\frac{-6}{1}=-6$.
